Пятница, 28 марта, 2025

Estimating the parameters of the regression equation

To use the regression equation to predict, you have to calculate the coefficients and Estimating the parameters of the regression equation regression equationsEstimating the parameters of the regression equation. And there is another problem that affects the accuracy of the prediction. It is that there are usually no all possible values of the variables X and Y, that is, the general set of the joint distribution in the forecasting problems is not known, only the sample from this general population is known. As a result, when forecasting is not a random component, in addition to the random component Another source of errors arises – errors caused by the incomplete correspondence of the sample of the general population and the errors generated by this in determining the coefficients of the regression equation.

In other words, due to the fact that the general population is not known, the exact values of the coefficients and Estimating the parameters of the regression equation regression equations Estimating the parameters of the regression equation cannot be determined. Using a sample from this unknown general population, one can only obtain estimates Estimating the parameters of the regression equation of both Estimating the parameters of the regression equation the true coefficients Estimating the parameters of the regression equation andEstimating the parameters of the regression equation.

In order for forecasting errors as a result of such substitution to be minimal, the assessment must be carried out by a method that guarantees the non-bias and effectiveness of the values obtained. The method provides unbiased estimates if, with its repeated repetition with new samples from the same general population, the condition Estimating the parameters of the regression equation is met and Estimating the parameters of the regression equation. The method provides effective estimates if, with its repeated repetition with new samples from the same general population, a minimum variance of coefficients a and b is ensured, i.e. the conditions Estimating the parameters of the regression equation and Estimating the parameters of the regression equation.

In probability theory, the theorem has been proved according to which the efficiency and non-bias of the estimates of the coefficients of the linear regression equation according to the sample data is ensured by applying the method of least squares.

The essence of the method of least squares is as follows. For each of Estimating the parameters of the regression equation the sampling points, an equation of the form Estimating the parameters of the regression equationis written . Then there is an error Estimating the parameters of the regression equation between the calculated and actual valuesEstimating the parameters of the regression equation. Solving the optimization problem of finding such values Estimating the parameters of the regression equation and Estimating the parameters of the regression equation which provide a minimum sum of squared errors for all n points, i.e. solving the search Estimating the parameters of the regression equationproblem , gives unbiased and effective estimates of the coefficients and Estimating the parameters of the regression equation. For the case of paired linear regressionEstimating the parameters of the regression equation, this solution is of the form:

Estimating the parameters of the regression equation Estimating the parameters of the regression equation

It should be noted that the unbiased and effective estimates of the true values of the regression coefficients for the general population obtained in this way from the sample do not guarantee against error in a single application. The guarantee is that, as a result of repeated repetition of this operation with other samples from the same general population, a smaller amount of errors is guaranteed compared to any other method and the spread of these errors will be minimal.

The obtained coefficients of the regression equation determine the position of the regression line, it is the main axis of the cloud formed by the points of the initial sample. Both coefficients have a very definite meaning. The coefficient Estimating the parameters of the regression equation shows the value Estimating the parameters of the regression equation at Estimating the parameters of the regression equation, but in many cases Estimating the parameters of the regression equation does not make sense, and often Estimating the parameters of the regression equation also does not make sense, so the above interpretation of the coefficient Estimating the parameters of the regression equation should be used carefully. A more universal interpretation of the meaning Estimating the parameters of the regression equation is as follows. If Estimating the parameters of the regression equation, then the relative change in the independent variable (the change in percentage) is always less than the relative change in the dependent variable.

The coefficient Estimating the parameters of the regression equation shows how much the dependent variable will change when the independent variable changes by one unit. The coefficient Estimating the parameters of the regression equation is often called the regression coefficient, emphasizing that it is more important than Estimating the parameters of the regression equation. In particular, if you take their deviations from their average values instead of the values of the dependent and independent variables, then the regression equation is transformed to the form Estimating the parameters of the regression equation . In other words, in the transformed coordinate system, any regression line passes through the origin (Figure 13) and there is no coefficient Estimating the parameters of the regression equation .

Estimating the parameters of the regression equation

Fig. 13. The position of the regression dependency in the transformed coordinate system.

The parameters of the regression equation tell us how the dependent and independent variable are related, but say nothing about the degree of closeness of the connection, i.e. show the position of the main axis of the data cloud, but do not say anything about the degree of closeness of the connection (how narrow or wide the cloud is).

The degree of closeness of the connection can be judged by the linear correlation Estimating the parameters of the regression equationcoefficient:

Estimating the parameters of the regression equation

The correlation coefficient varies from -1 to +1. The closer it is in absolute value to one, the stronger the dependence (the more the data cloud is pressed against its main axis). If Estimating the parameters of the regression equation the slope of the regression line is negative, the closer it is to 0, the weaker the bond, with Estimating the parameters of the regression equation a linear relationship between the variables there is no relationship, and when Estimating the parameters of the regression equation the relationship of variables is functional. The effect of the correlation coefficient on the shape and position of the data cloud is illustrated in Figure 14.

Estimating the parameters of the regression equation

Fig. 14. The influence of the shape and position of the data cloud on the paired linear correlation coefficient.

The correlation coefficient allows you to get an estimate of the accuracy of the regression equation – the coefficient of Estimating the parameters of the regression equationdetermination. For paired linear regression, it is equal to the square of the correlation coefficient, for multivariate or nonlinear regression Estimating the parameters of the regression equation it is more difficult to determine. The coefficient of determination shows how many percent of the variance of the dependent variable is explained by the regression equation, and Estimating the parameters of the regression equation – how many percent of the variance remained unexplained (depends on the random term Estimating the parameters of the regression equation we do not control) ).

Актуальное

Прогнозирование в системе государственного регулирования экономики

Все большее место в системе государственного регулирования занимает прогнозирование,...

Калькулирование себестоимости продукции и цены

На промышленных предприятиях применяют различные методы калькулирования себестоимости продукции,...

Методологические и методические особенности макроэкономического анализа

Агрегирование. Прежде всего следует иметь в виду, что в...

Макроэкономика как раздел экономической науки

Экономическая теория стала наукой после того, как классики обосновали,...

Счет распределения первичных доходов (текущие цены)

ИспользованиеРесурсыДоходы от собственности, передаваемые «остальному...
Темы

Определение платежного баланса

Платежный баланс (balance of payments) — статистический отчет, в...

Необходимость регулирования международных экономических отношений на межгосударственном уровне

Многостороннее регулирование мировой торговли на межгосударственном уровне оказывает все...

Нормативный метод планирования

Нормативный метод это метод планирования основанный на применении для...

Теория, методология и практика регионального прогнозирования и планирования

Важной формой проведения региональной политики является прогнозирование и планирование....

Международный кредит: понятие, принципы, функции, виды

Международный кредит представляет собой движение ссудного капитала в ...

Основные формы конкурентной борьбы на мировом рынке (ценовая, неценовая)

Наличие основ конкурентоспособности само по себе не гарантирует успеха...

СФЕРА УСЛУГ ЯПОНИИ

Среди отраслей нематериального производства особое место занимают торговля, оказание...

Оценка деятельности, отслеживание среды, внесение корректировок и контроль

Оценка эффективности организации и прогресса в ее деятельности является...
Статьи по теме

Популярные категории

Предыдущая статья
Следующая статья