Пятница, 28 марта, 2025

Dual linear programming problem

The dual linear programming problem can be formulated as follows:

Find variables yi (i=1,2,… (m) at which the objective function would be minimal

Dual linear programming problem,

without violating the restrictions

Dual linear programming problem

This problem is called dual (symmetric) in relation to the direct problem formulated in the second paragraph of this chapter. However, the converse is also correct, because both tasks are equal. Variables of a dual problem are called objectively conditioned estimates.

The direct and inverse problems of linear programming are interconnected by duality theorems.

The first duality theorem. If both problems have valid solutions, then they have an optimal solution, and the value of the objective functions will be the same:

F(x)=Z(y) or Dual linear programming problem.

If at least one of the problems does not have an acceptable solution, then none of them has an optimal solution.

The second duality theorem (complementary non-rigidity theorem). In order for vectors Dual linear programming problem to be optimal solutions to the direct and dual problem, respectively, it is necessary and sufficient that the following conditions are met:

Dual linear programming problem

Consequence1. Let the optimal value of some variable of the dual problem be strictly positive

Dual linear programming problem .

Then from condition (1) we get:

Dual linear programming problemor

Dual linear programming problem

The economic meaning of these expressions can be interpreted in the following wording. If the objectively conditioned estimate of some resource is greater than zero (strictly positive), then this resource is completely (without residue) consumed in the process of implementing the optimal plan.

Consequence2. Let the condition of strict inequality be fulfilled for the optimal value of some variable xi of the direct problem

Dual linear programming problem.

Then, based on the same first condition (1), we can conclude that yi=0.

Economically, this means that if in the optimal plan some resource is not fully used, then its objectively conditioned assessment is necessarily zero.

Актуальное

Структура и типы рынков

Рыночная система — довольно сложное образование, поэтому существует несколько...

Экономический анализ, его содержание и место в системе планирования и прогнозирования

Экономический анализ исходного уровня, состояния объекта в прошлом и...

ВНЕШНЕЭКОНОМИЧЕСКИЕ СВЯЗИ США

США занимают первое место в мире по объемам внешней...

Общая демографическая ситуация в мире

В последние пятьдесят лет население земного шара растет все...

Первый этап экономической социологии

Первый этап (начало 20-х — середина 50-х годов) совпал...
Темы

Нормативный метод планирования

Нормативный метод это метод планирования основанный на применении для...

Факторинг как метод кредитования внешнеэкономической деятельности

Факторинг это разновидность торгово-посреднической операции, сочетающейся с кредитованием оборотного...

Развитие сферы обеспечения жизнедеятельности населения в регионах

К числу отраслей социальной сферы, связанных с удовлетворением повседневных...

Теория несовершенной конкуренции

Английский экономист А.Пигу в начале XX века пришел к...

Банковский кредит и его формы

Необходимость кредита обусловлена тем, что одни домохозяйства и предприятия...

Субъекты и объекты валютного рынка

На валютном рынке функционируют четыре основных категории субъектов: банки...

Денежно-кредитная политика. Цели и инструменты

Цели денежно-кредитной политики классифицируются на конечные и промежуточные.Конечные цели:а)...
Статьи по теме

Популярные категории